Isotropic / Conformal Initial Singularities
- Lifshitz E M, I M Khalatnikov, Investigations in Relativistic
Cosmology, Adv. Phys. 12 (1963), 185
NB: Coins the
term "quasi-isotropic singularity".
- Eardley D, E Liang, R Sachs: Velocity-Dominated Singularities
in Irrotational Dust Cosmologies, J. Math. Phys. 13
(1972), 99
NB: Introduces the notions of "velocity-dominated" and
"Friedmann-like" (initial) singularities; employs as examples for
analysing the singularity structure the exact solutions for plane
symmetric and spherically symmetric expanding dust models (LRS
class II); fairly technical.
- Barrow J D: Quiescent Cosmology, Nature 272 (1978), 211
NB: Coins the term "isotropic singularity"; (quiescent: at
rest, motionless, passive).
- Penrose R: Singularities and Time-Asymmetry, in General
Relativity: An Einstein Centenary Survey, Eds. S W Hawking, W
Israel, (Cambridge: Cambridge University Press, 1979), 581
NB:
Establishes the Weyl curvature hypothesis (WCH) for the initial
singularity.
- Goode S W, J Wainwright: Isotropic Singularities in
Cosmological Models, Class. Quantum Grav. 2 (1985),
99
NB: The introductory paper on their continued programme of investigations
relating to "isotropic singularities" (cf.: Barrow 1978),
"quiescent cosmology" and Penrose's Weyl curvature hypothesis (here:
WTH). (- + + +).
- Goode S W: Vorticity and Isotropic Singularities,
Gen. Rel. Grav. 19 (1987),
1075
- Tod K P: Quasi-Local Mass and Cosmological Singularities,
Class. Quantum Grav. 4 (1987), 1457
- Penrose R: Difficulties with Inflationary Cosmology, in
Proc. 14th Texas Symp. on Relativistic Astrophysics, Ed. E J
Fergus, (New York: New York Academy of Sciences, 1989) 249
- Tod K P: Isotropic Singularities and the $\gamma = 2$
Equation of State, Class. Quantum Grav. 7 (1990), L13
- Goode S W: Isotropic Singularities and the Penrose-Weyl
Tensor Hypothesis, Class. Quantum Grav. 8 (1991), L1
- Tod K P: Isotropic Singularities and the Polytropic
Equation of State, Class. Quantum Grav. 8 (1991), L77
- Goode S W, A A Coley, J Wainwright: The Isotropic Singularity
in Cosmology, Class. Quantum Grav. 9 (1992), 445
NB: Good
introduction into the motivation for inflationary scenarios.
- Newman R P A C: On the Structure of Conformal Singularities
in Classical General Relativity, Proc. R. Soc. Lond. A
443 (1993), 473
NB: Provides arguments why
"conformal singularity" should be preferred to "isotropic
singularity".
(+ - - -).
- Newman R P A C: On the Structure of Conformal Singularities
in Classical General Relativity. II Evolution Equations and a
Conjecture of K P Tod, Proc. R. Soc. Lond. A 443
(1993), 493
NB: Discusses the Cauchy initial value problem for barotropic perfect
fluid cosmological models with conformal singularity when $\gamma =
4/3$. (+ - - -).
- Tod K P: Mach's Principle and Isotropic Singularities, in
The Renaissance of General Relativity and Cosmology, Eds. G
Ellis, A Lanza, J Miller, (Cambridge: Cambridge University Press,
1993)
- Claudel C M, K P Newman: The Cauchy Problem for Quasi-Linear
Hyperbolic Evolution Problems with a Singularity in the Time,
Proc. R. Soc. Lond. A
454 (1998), 1073
NB: Very technical.
- Anguige K, K P Tod: Isotropic Cosmological Singularities
I. Polytropic Perfect Fluid Spacetimes, Ann. Phys. (N.Y.)
276 (1999), 257.
Also: Preprint
gr-qc/9903008.
NB: $p(\mu) = (\gamma-1)\,\mu$, $1 < \gamma
\leq 2$. (+ - - -).
- Anguige K, K P Tod: Isotropic Cosmological Singularities
II. The Einstein-Vlasov System, Ann. Phys. (N.Y.)
276 (1999), 294.
Also: Preprint
gr-qc/9903009.
NB: Collisionless gas of massless particles,
existence of unique solutions proved for spatially homogeneous
subcase. (+ - - -).
- Anguige K: Isotropic Cosmological Singularities III. The
Cauchy Problem for the Inhomogeneous Conformal Einstein-Vlasov
Equations, Ann. Phys. (N.Y.) 282 (2000), 395.
Also: Preprint
gr-qc/9903018.
NB:
Collisionless gas of massless particles (i.e., $T^{a}{}_{a} = 0$),
existence of unique solutions proved in general spatially
inhomogeneous case.
Selected References
Last revision: Wes, 16-8-2000 (This page is under construction)